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N O N S T A T I O N A R Y  H Y D R O D Y N A M I C  

C H A R A C T E R I S T I C S  OF A D O U B L E  G R I D  OF P R O F I L E S  

O. V. Chernysheva  and V. A. Yudin UDC 532.0301:533.697 

The flow about a double grid of solid profiles of arbitrary shape which vibrate in a stream of an 
ideal incompressible fluid is considered. Behind the grid profiles, the nonstationary vortex traces 
simulated by the lines of contact velocity discontinuity are taken into account. The problem is 
reduced to the solution of a system of two integral equations relative to the fluid velocity on the 
initial profiles of the double grid under the assumption that the vibration amplitudes are small. 
Formulas for calculating the nonstationary forces and moments are derived. The dependences 
of these forces on the shape, mutual positions, and laws of vibration of the grid profiles are 
studied. 

I n t r o d u c t i o n .  The blade rims of turbomachines are often designed from double (main and auxiliary) 
blades (Fig. 1). In particular, these rims are used in mine ventilators operating at varied air supply owing to 
the change in the angles at which the blades are installed by special rotary devices. The rotation of the double 
blades of the ventilator's rotary wheels is preferred from the engineering viewpoint owing to the decrease in 
the number of expensive rotary devices and the choice of the axis of rotation which ensures zero centrifugal 
moments of inertia [1]. The problem of mutual arrangement of the main and auxiliary blades with a view to 
optimizing their hydrodynamic characteristics has not yet been studied adequately because of the absence of 
effective and reliable programs of calculation of these characteristics. In this paper, an algorithm of calculating 
the stationary and nonstationary forces and the moments of the profiles of a double grid which vibrate in a 
flow of an ideal incompressible fluid is constructed. For a single grid, the algorithm was constructed in [2], 
and it is reduced to the solution of one integral equation on the grid profile. One managed to generalize this 
algorithm in the case of a double grid, but the problem is reduced to the solution of a system of two integral 
equations on the main and auxiliary profiles. The algorithm is realized as a computer program. 

The dependence of the stationary and nonstationary forces and the moments which occur on the main 
and auxiliary profiles of a double grid on their shape, the mutual position, and the laws of vibrations is studied. 
It is shown, in particular, that the phase shift between the vibrations of the main and auxiliary profiles is one 
of the key parameters which affect considerably the level of nonstationary forces. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  We shall consider the potential nonstalling flow of an ideal 
incompressible fluid about a double grid of vibrating profiles in the plane of the complex variable z = x + iy. 
The fluid velocity V-oo is assumed to be constant at an infinite distance before the grid. The profiles of the 
main and auxiliary grids are considered arbitrary and the output edges of the profiles axe regarded as the 
points of reversal. We assume that the profiles vibrate with small amplitudes A according to the following 
harmonic law of the equal frequency w with a constant phase shift # between the adjacent profiles: 

z~(s,t) = Zko(S) + inh + dgk(s)exp(j(wt  + nl~)). 

Here the subscript k = 1 and 2 denotes the main and auxiliary profiles, respectively, zko(s) is the complex 
coordinate of the point s of the contour in the middle (nondeformed) position, gX = g~ + zgy 1 and g2 = 
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Fig. 1 

(g2 + ig2v)exp (j/~12) are the vibration modes of the main and auxiliary profiles, #12 is the phase shift between 
them, h is the grid step, n is the double-profile number, and/~ = 27rm/N (m = 1, N - 1). Hereinafter, the 
imaginary unit j is introduced to describe time processes and it does not interact with the imaginary quantity 
i ( i . j  r -1) .  

Behind the profiles, we take into account the nonstationary vortex traces (leaving the target edges 
because of the change in the circulation on the profiles), which is simulated by the contact-discontinuity lines 
of velocity. 

By virtue of the potential character of the flow, the complex velocity of the fluid ~E(z, t) is an analytic 
function of z everywhere outside the vibrating profiles of the double grid and the vortex traces behind them. 
We present it in the form 

Vlc(z, t) = V0(z) + V(z) exp (jwt), 

where V0(z) is the flow velocity for a fixed double grid and V(z) is the nonstationary velocity perturbation 
caused by small perturbations. 

The function Vr.(z, t) should satisfy the following conditions: 
(1) V0(-ee)  = V _ ~  and V(-cx~) = 0 at infinity before the grid; 
(2) Periodicity of V0(z + inh) = V0(z) and V(z + inh) = V(z) exp (jn#); 

(3) No-flow at the boundaries of the profiles V~rn(r = Vk(s, t)exp(-ia~(s, t)) ,  where Vk(s,t) = 
�9 --k V~n-jwA~k(s) exp(j(cot+ V0 k (s) + yk (s) exp (j (wt + n #) ) is the modulus of the relative fluid velocity, V Ern = 

n#)) is the relative fluid velocity on the nth profile of the grid, a~(s, t) = Ok(s) + ak(s)exp (j(cot + n#)) is 
the angle between the tangent to the vibrating contour L~k and the OX axis, ok(s) is the angle between the 
tangent to the fixed contour Lnk and the OX axis, and s is the length of the contour arc Lnk reckoned from 
the output edge in the direction of the positive pass around the contour; 

(4) Pressure continuity (the dynamic condition) and the normal velocity component of the fluid (the 
kinematic condition) upon passage through the vortex traces�9 In view of the low vibration frequency, we 
assume [2] that the vortex traces are located along the streamlines of the steady-state flow which leaves the 
output edges of the profiles; 

(5) Joukowski-Chaplygin condition at the acute output edges, which has the form 

jw f yk(a )de + y0 (-0) = 0, vk(+0) + = v 0) L;k 
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with allowance for the dynamic condition in the traces (the condition for the velocity jump at the acute output 
edge). 

M e t h o d  of Solution. According to the generalized Cauchy formula, with allowance for the condition 
at infinity before the grid we have 

WE(z,t)= 1 2 ~I / { [ 7r ck ] } 
2iNh ~ V~(r coth ~ ( z -  - inh)  +1 d( k 

k = l  n=O t 
Lok 

1 2 N-lC~, 7r 

+ 2-~ k~=l .~=0 ~0 ~(%t){coth[-~ (z -- (*k(') -- inh)] + l}dT"k + W-co, 

where the tangent discontinuity of the velocity on the line of vortex trace is 
,:: ,o{ / }L ]" 

Vok-(r) gt Rei VEn(Ck, t)d( k t k = t - 

,=,k' Vok ( ~ ) " L t 0 
nk 

We perform a limiting passage from the domain of analyticity Vr. to the profiles of a double grid by 
means of the Sokhotskii-Plemelj formulas. By virtue of the small vibrations, we linearize the stationary 
solution II0. Here the boundary conditions are displaced to the stationary positions of the profiles, and 
integration over the moving contours L~k is replaced by integration over the fixed contours L0k, ignoring 
second-order quantities compared to the amplitude A of vibrations. We write the terms with the factor 
exp (jwt) in the resulting equalities. Taking into account the Joukowski-Chaplygin condition of unambiguous 
resolvability and using the actual part with respect to i, we obtain a system of integral equations relative to 
the values of the stationary velocities Vf(s) and the amplitude values of the nonstationary velocities Vk(s) 
on the grid profiles, which has the unique solution 

2 

E f 
k=lLk 

where 

= hi0( . ) ,  

2 
VP(s)- k~. Vk(a)r k = A. II~(s), p = 1, 2, 

pk r = c g k ( , , ~ ) -  o .~( ,g~(+o,~)  + r  ~)), 

IITo(S ) = I Ig(s ) -  0.5(IIg(+O)+ IIg(-O)), II~(s) = Rei{2exp(iOP(s))V_oo}, 

r (#, s, o-) = ,I,p%,, ~, ,,) - o.5(,I,"%,, +o,,,1 + ,I, pk (#, - o ,  o0), 

{ exp(iOP(s)) w-1 . {  [ w ] 
O'~(#,s,a) = Rei iNh ~ exp(2n,) coth ~-~ (zg - . ~  - inh) + 1 

n=O 

-jwj ccexp (-J~ [~hV0k(.) (z~- <~'-inh)] +I }dT} }, 
0 

n~ (~,, s, ,,) = n"o,,  .% o-) - o .s(n,  0,, +o, ~) + n , (# ,  - o ,  o-) 1, 
2 

IIP(#, s, a ) =  k~l Vok(a)D#(#,s,a)da k + jwG'(#,s), 

(1) 
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DPk(#,s,a) = Re/ - iN2h 2 ~ (g(s) - g(a)exp(jn#))sinh -2 7r ~-fi (zg - ~0 k - inh)  , 
n----0 

The system of integral equations (1) was solved numerically. The profile was replaced by a polygon 
inscribed in it [3], and the integral over the trace was calculated from the Filone quadrature formulas for the 
integrals of varying functions [4]. The resulting system of linear algebraic equations was solved by the Gauss 
method with the choice of the maximum element. 

Ca lcu la t ion  of t h e  Forces and the  M o m e n t .  On the initial (n = 0) profile, the formulas to 
calculate the forces 

X ~ = 0.5pV2_ooh(C~x + CPxAexp(jwt)), YP = 0.5pV2_c~h(C~y + C~Aexp(jwt)) 

and the moment relative to the input edges of the profile 

M p = 0.5pV2_ooh(C~M + CPMAexp(jwt)) 

where p is the density of the fluid, and C~x , C~y, C~M, C~, C~, and C~t are the corresponding dimensionless 
factors, are derived by means of the Cauchy-Lagrange integral and have the form [1, 5] 

C~x-iC~y=~ f(Vr ", C~M=ae f(Vo'(s))~'~ ", 
Lg Lg 

C~X -- iC~ = ei f {V0~(~)V~(~) + j~Yo~(~)Re (g~(~)exp ( - / ~ ( ~ ) ) ) )  dsP 
Lg 

--i f (V0P)2(s) d ~ exp (-iaP(s))ds p - 2ijw /{VP(s)4-  jwRe (gP(s)exp (-laP(s)))}( zP -zP,)ds p, 
Lg Lg 

CPM = -2  f {VoP(s)VP(s) 4- jwVg(s)Re(gP(8)exp(-iaP(s)))}Re(zPdSP)d~P 
Lg 

"4-/(V:(s))2Re(~zPpZ" dz') -- f (V:(s))2Re(g" d~) 
~g Lg 

[{v~(~) + j~Re (~P(~) exp (-i~(~)))}(IzPff - +jw Iz~ff) ds p . 
Lg 

Here z. p is the complex coordinate of the acute output edge of the profile Lg. These formulas are convenient 
to use because they contain only the solutions of the integral equations (1) VP(s) and V0P(s). 

Resul t s .  ~Our algorithm is realized as a computer program for calculating both stationary and 
nonstationary characteristics. Generally, to obtain three correct signs after a comma, one needs to specify 
no more than 30 points on the main and auxiliary profiles of a double grid and no more than 100 points in 
the traces behind them. The computing time of one variant on a AT-486 computer does not exceed 3 min. 
To check the work of the program, we made a comparison with [5] for the case where the auxiliary profile 
coincides with the main profile and was located under the latter at a distance of the half-step of a double grid. 
The vibration modes were set identical as well: gX(s) = g2(s). In this case, the double grid became equivalent 
to a single grid with the halved step. For all the variants of calculation, the stationary and nonstationary 
velocities and forces almost completely coincide (the discrepancy is no more than 0.1%). 

To study the behavior of the stationary and nonstationary hydrodynamic characteristics, a double grid 
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Fig. 3 

in flow with V-oo = exp (-i~r/4) and the initial profiles shown in Fig. 1 was taken. We shall characterize the 
position of the auxiliary profile relative to the basic parameters c (the distance along the front between the 
output edges of the profiles) and 0 (the angle of installation of the auxiliary profile relative to the input edge; 
O = 0 corresponds to the initial position of the auxiliary profile shown in Fig. 1). 

Figure 2 shows the stationary circulation F0 k which characterizes the rotation of the flow of the main 
2 1 ( k = 1) and auxiliary (k = 2) grids versus O. Obviously, the quantities F0 = F0 z + F 2 and 3'0 = r0/r0 

characterize the total rotation of the flow by the double grid and the relative contribution from each grid to 
this rotation, respectively. One can see on the diagrams that F0 and "Y0 depend strongly on the position and 
the angle of installation of the auxiliary grid relative to the main grid, especially at small distances between 
them. 

Figure 3 shows the dependences of the amplitude of the circumferential components of the 
nonstationary forces Cu 1 (solid curves) and C 2 (dashed curves) during bending [Fig. 3a, ga = i and 
g 2 ~ i .  exp (j#12)] and torsional [Fig. 35, ga = i (z~(s)  - zZ**) and g2 = i (z~(s)  - z2**)exp (j#12), where 
z,Z, and z,2, are the coordinates of the input edges of the initial profiles] vibrations on the phase shift #12 for 
different positions of the auxiliary profile relative to the main profile ( c / h  = 0.10, 0.15, and 0.20, 0 = 30 ~ 
and the Strouhal number Sh = w h / V _ ~  = 1). One can see that the maximum of the amplitude is observed 
when the main and auxiliary profiles change in antiphase, and this maximum increases as the distance 
between them becomes smaller [the behavior of the curves C~ and C ~  (p = 1 and 2) is qualitatively similar]. 
This is connected with the fact that the width of the blade-to-blade channel between the main and auxiliary 
profiles changes during vibrations with the phase shift #12- Evidently, for a fixed e, the change is maximal for 
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antiphase vibrations (/Z12 = 7r); the smaller r the greater the relative change in the channel width. 
Figure 4 shows the dependences of the amplitude of the circumferential component of the nonstationary 

forces C 1 (solid curves) and C 2 (dashed curves) on the relative dimension of the auxiliary profile (the chords 
b2) for various frequencies of flexural vibrations w (gl = i, g2 = i, #12 = 0, ~ = 0.3h, and 0 = 30~ In the 
calculations, the chord b2 of the auxiliary profile was changed, while the profile itself remained unchanged. 
As one should expect, the level of nonstationarity (the moduli of the forces C~, where p = 1 and 2) increases 
with increase in w (Sh = wh/V-oo increases). Here the dependence of the amplitudes of the nonstationary 
forces on the profile dimension has a complicated character and, in particular, can be nonmonotone. 

The examples show that the mutual arrangement of the profiles of a double grid, their relative 
dimensions, and the phase shift between their vibrations affect greatly the stationary and nonstationary 
hydrodynamic characteristics of the double grid. This circumstance should be taken into account in the 
choice of the optimum geometrical parameters of double blades. 
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